#### Assessment of the levels of mercury in students aged 12 to 18

Afonso Mota, Bernardo Alves, João Leal Portugal



#### Mercury exposure, an "invisible" problem



PER PER ASVRGO COLÉGIO VALSASSINA

UN Environment Programme, Time to Act, 2013.

#### Mercury exposure

Mercury m Ununhi





Chemical composition of methylmercury, one of the

most toxic variants of the studied substance.

Source: Clarkson & Magos (2006).

 $Hg^+ - CH_3$ 



# 

Source: http://www.publicnewsservice.org/

#### **Experimental design**



RDV

# Methodology

• The experimental protocol followed the instructions provided by the **COPHES project**, an European project which looks to harmonize the collection and treatment of samples for biomonitoring studies.

• The process of biological sample collection (human hair) was approved by **Colégio Valsassina's Pedagogical Direction (ethics commission)** and **authorized by the Portuguese National Data Protection Commission.** 





Declaração

Para os devidos efeitos informamos que, em reunião da Direção Pedagógica do Colégio Valsassina, realizada no dia nove de janeiro de 2017, foi analisado o projeto de investigação intitulado "Avaliação dos níveis de mercúrio nos alunos do Colégio Valsassina", desenvolvido no âmbito da disciplina de Biologia, do Curso de Ciências e Tecnologias.

Pela sua importância, quer a nível científico, quer a nível académico e pedagógico para os alunos envolvidos, a Direção Pedagógica do Colégio Valsassina, aprovou por unanimidade o desenvolvimento do referido estudo.

Por ser verdade, se passa a presente declaração, que vai autenticada com o carimbo em uso no Colégio Valsassina.

Colégio Valsassina, Lisboa, 9 de janeiro de 2017



## Methodology





# Study sample

#### Hair sample analysis

| Education<br>level | Number of students<br>available to<br>participate | Samples collected | Total per age<br>group |  |  |
|--------------------|---------------------------------------------------|-------------------|------------------------|--|--|
| 7°                 | 9                                                 | 9                 |                        |  |  |
| 8º                 | 9                                                 | 9                 | 32                     |  |  |
| <b>9</b> º         | 24                                                | 14                |                        |  |  |
| 10º                | 36                                                | 17                |                        |  |  |
| 11º                | 25                                                | 18                | 43                     |  |  |
| 12º                | 13                                                | 8                 |                        |  |  |
| Total              | 116                                               | Total<br>(sample) | 75                     |  |  |



- Sample made up of 75 individuals
  29 males and 46 females,
  between 12 and 18 years old.
  Average age was 14,76 ± 1,63
- Average age was  $14,76 \pm 1,63$  years.



#### **Product sample analysis**

| Education<br>level              | Female | Male |      | Total |  |
|---------------------------------|--------|------|------|-------|--|
| 7°                              | 1      | 1    |      | 2     |  |
| 8°                              | 1      | 1    |      | 2     |  |
| 9º                              | 1      | 1    |      | 2     |  |
| 10º                             | 1      | 1    |      | 2     |  |
| 11°                             | 1      | 1    |      | 2     |  |
| 12º                             | 1      | 1    |      | 2     |  |
| Total students                  | 6      | 6    | 5 12 |       |  |
| Number of samp<br>stuc          |        | 10   |      |       |  |
| Total of samp<br>(12 students a |        | 120  |      |       |  |











NIC-MA-3000 (Nippon Instruments Corporation).





NIC MA-3000 (Nippon Instruments Corporation) functioning diagram Adapted from: Barros, 2016

|       | 1    | e  |               |          | R          | MAS    | 9 |          |                                        |               |            |
|-------|------|----|---------------|----------|------------|--------|---|----------|----------------------------------------|---------------|------------|
| ATON  | IZE- | ·3 | 00:32 / 02:34 |          |            |        |   |          |                                        | A REALING     |            |
| 19.19 |      |    | STD           |          |            |        |   | SMP      |                                        |               |            |
| 20    | D    | 10 | ODONNICHICOI  | 270      | 1141 P. 11 | 0 000  |   |          |                                        |               |            |
| 25    |      | 18 | ORGANISM(SOL  | 37A      |            | 10.700 |   |          |                                        | A A A A A A A |            |
| 24    |      | 0  | PURGE         | BLANK CI | HECK       |        |   |          | 1999 1999 1999 1999 1999 1999 1999 199 |               |            |
| 23    |      | 17 | ORGANISM(SOL  |          |            | 11.000 |   | 11.75973 | 0.06247                                | 10.034        | 1457.03030 |
| 22    |      | 16 | ORGANISM(SOL  | 35       |            | 3.900  |   | 0.42000  | 0.00047                                | 10.024        | 1457.63636 |

|     | 1546            | SAMPLE | NETHOD                                                                                                         | NAME                                   | SVOL   | ADD.STD                 | AREA[    | ON]     | MEAS                                    | CONC       | ECOVER        | OY   | RANGE                                   | DATE                                                                                                             | REMARKS   |
|-----|-----------------|--------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|-------------------------|----------|---------|-----------------------------------------|------------|---------------|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|
| No. | No. NEAS SAMPLE | No.    | METHOD                                                                                                         | NAME                                   | [mg]   | [ng]                    | LOW      | HIGH    | [ng]                                    | [ppb]      | [%]           | UN   | POANOL                                  | DAIL                                                                                                             | REMINITY. |
| 13  |                 | 10     | ORGANISM(SOL                                                                                                   | 32A                                    | 10.200 | A DECEMBER OF THE OWNER | 9.08591  | 0.04764 | 11.492                                  | 1126.66667 |               | 0    | HIGH                                    | 4/11 15:14                                                                                                       |           |
| 14  |                 | 0      | PURGE                                                                                                          | BLANK CHECK                            |        | Statistics.             | 0.01786  | 0.00049 | 0.017                                   |            |               | 0    |                                         | 4/11 15:23                                                                                                       |           |
| 15  |                 | 11     | ORGANISM(SOL                                                                                                   | 32A-DUP                                | 10.200 |                         | 9.36688  | 0.05076 | 12.447                                  | 1220.29412 |               | 0    |                                         | 4/11 15:31                                                                                                       |           |
| 16  |                 | 0      | PURGE                                                                                                          | BLANK CHECK                            |        |                         | 0.02014  | 0.00079 | 0.020                                   |            |               | 0    |                                         | 4/11 15:40                                                                                                       |           |
| 17  |                 | 12     | ORGANISM(SOL                                                                                                   | 32B                                    | 10.000 |                         | 9.71081  | 0.05406 | 13.458                                  | 1345.80000 | - 6 M         | 0    |                                         | 4/11 15:48                                                                                                       |           |
| 18  |                 |        | and and the second second second                                                                               | BLANK CHECK                            |        |                         | 0.01132  | 0.00038 | 0.006                                   |            |               | 0    | 112 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 4/11 15:57                                                                                                       |           |
| 19  |                 | 13     | ORGANISM(SOL                                                                                                   | 33A                                    | 10.000 |                         | 5.02569  | 0.02679 | 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 813.20000  |               | 0    |                                         | 4/11 16:04                                                                                                       |           |
| 20  |                 |        | ORGANISM(SOL                                                                                                   | and the same same same same same       | 10.500 |                         | 7.68450  | 0.04215 |                                         | 934.28571  | harris        | 0    | 1010000000                              | 4/11 16:12                                                                                                       |           |
| 21  |                 |        | ORGANISM(SOL                                                                                                   | Contractor of succession of the second | 9.300  |                         | 7.77226  | 0.04031 |                                         | 994.30108  | gamman and    | 0    |                                         | 4/11 16:20                                                                                                       |           |
| 22  | -               |        | ORGANISM(SOL                                                                                                   | A CONTRACTOR OF THE OWNER              | 3.900  |                         | 3.42093  | 0.01847 | and the second second                   | 1418.46154 | friend and    | 0    |                                         | 4/11 16:27                                                                                                       |           |
| 23  |                 |        | ORGANISM(SOL                                                                                                   |                                        | 11.000 |                         | 11.75973 | 0.06247 | 16.034                                  | 1457.63636 |               | 0    | HIGH                                    | 4/11 16:35                                                                                                       | <u>N</u>  |
| 24  | •               | 0      | the second s | BLANK CHECK                            |        |                         |          |         | and the second second                   |            |               |      | -                                       | and the second | N         |
| 25  |                 | 18     | ORGANISM(SOL                                                                                                   | . 37A                                  | 10.700 |                         |          | 12.21   |                                         |            | 11000         |      |                                         |                                                                                                                  |           |
| 20  | 1               | 10     | ODCANIENNEOI                                                                                                   |                                        | 0 000  |                         |          |         |                                         |            | The party and | 1111 |                                         | the second s   |           |

No. Table



ROM: 2.1.0

- - • • • Por

320

~

## **Results (hair samples)**

|                    | Hair<br>length(cm) | Age<br>(years) | Body mass<br>index<br>(BMI) | [Hg]<br>(ng g <sup>-1</sup> ) |
|--------------------|--------------------|----------------|-----------------------------|-------------------------------|
| Average            | 29,19              | 14,85          | 20,19                       | 1148,48                       |
| Standard deviation | 17,66              | 1,69           | 2,40                        | 688,57                        |
| Minimum            | 2,00               | 12,00          | 15,06                       | 12,6                          |
| Maximum            | 70,00              | 18,00          | 26,96                       | 3314,74                       |
| N (total)          | 70                 | 70             | 70                          | 82                            |













Age at the time of collection



• Statystical analysis (Kruskal-Wallis test) shows a correlation between the individuals' body mass index and their mercury concentration.



## **Product analysis**

We analyzed:

- 43 food products
- 48 cosmetics and hygiene products
- 4 office supplies



















#### **Product analysis**









#### **Product analysis**



|                    | Food products<br>[Hg] (ng g <sup>-1</sup> ) | Cosmetics<br>and hygiene<br>products<br>[Hg] (ng g <sup>-1</sup> ) | Office supplies<br>[Hg] (ng g <sup>-1</sup> ) |
|--------------------|---------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|
| Average            | 6,95                                        | 0,39                                                               | 3,93                                          |
| Standard deviation | 27,9                                        | 1,2                                                                | 2,82                                          |
| Minimum            | 0,04                                        | 0                                                                  | 1,21                                          |
| Maximum            | 174,58                                      | 45                                                                 | 7,85                                          |
| n (total)          | 43                                          | 48                                                                 | 4                                             |



• The 82 hair samples analyzed revealed an average mercury concentration of  $1150,10 \pm 685,34 \text{ ng g}^{-1}$ . Mercury values varied between 12,6 and 3314,74 ng g^{-1}.

• Our study found values similar to those published in other investigations, both in Portugal and abroad (although these studies sampled adults).

• We'd like to emphasize our study's innovative nature. There haven't been any investigations conducted in Portugal which targeted such a young age group



• When compared with the US EPA's reference value for mercury hair concentration, 1000 ng g<sup>-1</sup>, **46% of the sampled students** have [Hg] **higher than this value**, beyond which there may be consequences to human health.

 When compared with WHO's reference value, 2000 ng g<sup>-1</sup>, 12% of students have [Hg] higher than this limit.

A recent European study suggests that the reference limit should be 0,58 µg.g<sup>-1</sup> (Kirk, 2016).
 83% of individuals have a mercury concentration superior to this value.



• Our data suggests an inverse statistical correlation between the individuals' BMI and their mercury hair concentration (Kruskall-Wallis test).

• We recommend further studies on this topic, focusing on an age group similar to ours, since these people are (potentially) more susceptible to damage from mercury poisoning.



• The product samples' analysis revealed that **fish is the main source of mercury contamination**. This data is consistent with the results found in previous investigations.

• The results obtained in the collected fish samples (174,58 ng g<sup>-1</sup> in a snapper and 36,58 ng g<sup>-1</sup> in a salmon) are inferior to the safe limit set by WHO of 500 ng g<sup>-1</sup>. However, both species are known to usually contain low levels of mercury, therefore our results are to be expected.





#### Next steps

consideration • When taking into that be exposed to everyone can mercury, particularly through food consumption (mainly predatory fish), recommend we the promotion of campaigns raise to awareness to this problem and to instill better dietary habits in the population, in relation to which food to consume more often.







#### http://www.fishchoice.eu/calculator/

| FISHCHOICE                        | Simple Calculator Profess | ional Access Request 🛛 Log In 🛛 💥 English |
|-----------------------------------|---------------------------|-------------------------------------------|
|                                   |                           |                                           |
| SIMPLE CALCULATOR                 |                           |                                           |
| PROFILE:<br>Boys (10-19 y)        |                           |                                           |
| CHOOSE YOUR WEEKLY INTAKE OF FISH |                           |                                           |
| TUNA                              |                           |                                           |
| 100 gr.                           | 150 gr.                   | 200 gr.                                   |
| SHRIMP AND PRAWNS                 |                           |                                           |
| <b>50 gr</b>                      | 150 gr.                   | 300 gr.                                   |
| SQUID                             | 0                         |                                           |
| 100 gr.                           | 150 gr.                   | 200 gr.                                   |
| ALASKA POLLOCK                    |                           |                                           |
|                                   | 150 gr.                   | 20 g.                                     |





# Available in: <a href="https://www.youtube.com/watch?v=UCnD5IOBPao&t=46s">https://www.youtube.com/watch?v=UCnD5IOBPao&t=46s</a>

#### http://escola.cvalsassina.pt/mercury



| Mercury | PROBLEM | MERCURY CYCLE | EXPOSURE | STUDY | PREVENTION | KEY FACTS | TEAM | VIDEO |
|---------|---------|---------------|----------|-------|------------|-----------|------|-------|
|         |         |               |          |       |            |           |      |       |



#### Mercury, an invisible problem

Mercury is a metal, liquid at ambient temperature and pressure. This element is present in the environment in several states, such as elemental mercury, and inorganic or organic species, like methylmercury. Mercury is present in nature due to natural processes like rock erosion and volcanic activity. However, most Hg existent derives from human activity. This compound is bioamplified through the food chain.

Mercury is a toxic element, and its presence in the human organism can lead to damage in the nervous and cardiovascular systems, for example. This compound can be extremely dangerous due to the human body's incapacity to filter/excrete it. As such, absorbed mercury will accumulate in our bodies.

The dangers associated with mercury contamination led to the Minamata Convention, which attempts to safeguard human and environmental health against this element's debilitating effects.

When faced with this worrying issue, we developed a study in which we looked to evaluate the mercury contamination of students in our school.

#### **BD** production to raise awareness

Mercury is a metal, liquid at ambient temperature and pressure. Mercury is present in nature due to natural processes like rock erosion and valcanic activity. However, most Hg existent derives from human activity. This compound is bioamplified through the food chain.

Mercury is a toxic element, and its presence in the human organism can lead to damage in the nervous, neurological and cardiovascular systems, for example. This compound can be extremely dangerous due to the human body's incapacity to filter/excrete it. As such, absorbed mercury will remain and accumulate indefinitely in our bodies. The dangers associated with mercury contamination led to the Minamata Convention, which attempts to safeguard human and environmental health against this element's debilitating effects.

This is a story of a family and a teacher, a fishseller and a pharmaceutical that as teenagers understood the risks of mercury and how society is unaware of this problem.









#### **Final considerations**



Some relevant points emerged from our study:

- There's a need for more studies of this kind
- How do we effectively prevent mercury exposure?
- How do we educate the population to choose a healthier diet, particularly concerning fish?
- Besides mercury, are we exposed to other metals or contaminants?

## Acknowledgments

- Professor Ana Sousa
- Professor Ramiro Pastorinho
- University of Beira Interior
- Rafael Barros
- Professor Sofia Caranova
- Miguel Guerreiro
- Professora Liliana Moreira
- Professor Tiago Santos

